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Al~t r~ t - -The  behavior of the spectrum of short-wavelength waves that occur at the interface of 
separated, horizontal, gas-liquid flows is controlled by the rate at which energy is transferred from the 
gas flow into the liquid, the rate at which waves decay due to viscous dissipation and also by the nonlinear 
interactions between the various modes which cause an energy cascade through the spectrum. Measure- 
ments of evolving wave spectra, both with and without additional waves induced by an oscillating paddle, 
are used to examine energy input and interaction rates between waves. For cases where waves are induced, 
strong interactions between the induced wave and its first overtone, which increase as the layer gets 
thinner, are observed. An equation to describe steady wave spectra, which incorporates the effects of 
growth, dissipation and energy transfer in the form of interactions between a wave and its first overtone, 
is derived using a dynamic energy balance. The critical effects of layer depth, gas shear and surface 
geometry on the energy transfer rate are included in the analysis. The resulting spectral equation elucidates 
the important effects which control the wave composition of the gas-liquid interface and also provides 
reasonably good predictions of experimental wave spectra. 
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1. I N T R O D U C T I O N  

Waves occur at the interface of the separated flow regimes over a wide range of conditions. They 
are known to influence interfacial shear and thereby affect both the pressure drop and interfacial 
transport rates. In addition, qualitative changes in the wave patterns are of interest because they 
may signal impending flow regime transitions. Previous studies to identify the qualitative behavior 
of the interface (Hanratty & Engen 1957; Telles & Dukler 1970; Webb & Hewitt 1975) have noted 
that many different regimes exist and the behavior can be rather complex. However, it is convenient 
from a theoretical perspective to divide the waves into two primary types: waves with wavelengths 
much longer than the corresponding layer thickness (which may be either kinematic or dynamic 
in nature) and those with wavelengths on the order of or smaller than the layer thickness (which 
are dynamic waves in the capillary-gravity regime). The long waves have been linked to the 
transition to slug flow by Taitel & Dukler (1976) and Lin & Hanratty (1986) and have been shown 
to affect atomization by Woodmansee & Hanratty (1969). Back & McCready (1988a, b) demon- 
strated that it is possible to directly calculate interfacial mass transfer coefficients which accurately 
match experimental values without the use of any adjustable parameters from measured wave 
spectra of short waves. The surface roughness, which results from the presence of short-wavelength 
waves has been linked to the observed pressure drop by Andritsos & Hanratty (1987). 

The present study will focus on conditions for horizontal stratified gas-liquid flows where 
short-wavelength waves are the dominant type. Waves will be described in terms of a surface 
deviation-frequency spectrum which is perhaps the simplest description that contains most of the 
quantitative information necessary to describe the wave field. A frequency spectrum for waves 
contains information about the average wave amplitude as a function of frequency. It is an 
appropriate instrument for use in the description of a random wave field which is comprised of 
numerous weakly interacting waves which are nearly sinuous in shape. Under these circumstances, 
the form of the spectrum is determined by both the rate at which energy is gained or dissipated 
by individual waves and by dynamic interactions between modes which lead to an energy flux 
through the spectrum. It is noted that the wave spectrum for waves with wavelengths much longer 
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than the layer thickness is distinctly different. Because long-wavelength waves will not interact very 
strongly and therefore not transfer energy to any significant extent, the shape of a spectrum of long 
waves will represent only the amplitudes of the various modes necessary to form the characteristic 
shapes of the waves. 

Frequency spectra have been used to describe ocean and lake waves since the 1950s. The first 
theoretical predictions of the spectral shape which were done using dimensional analysis were 
suggested by Phillips (1958) for gravity waves and Hicks (1960) for capillary waves. Since this time, 
numerous theories (Hasselmann 1962, 1963; Valenzuela & Laing 1972; Phillips 1985) have been 
presented which attempt to include the ubiquitous nonlinear wave interactions that control the 
shape of the spectrum. However, due to the complexity of including all of the various wave 
interactions which occur in a wave field on a large body of water, only minimal success has been 
achieved at predicting the shape and magnitude of the wave spectrum. The present state of the art 
on this subject is given in the papers by van Gastel (1987) and Janssen (1987). These authors use 
direct numerical simulation of the wave field as it evolves in time. van Gastel considers only purely 
resonant interactiong in all directions and Janssen considers coUinear overtone interactions between 
two modes without imposing the condition that the speeds match. While these procedures appear 
promising and provide some quantitative and qualitative agreement with data, the complexity of 
the calculations and length of computing time necessary limit the utility of these approaches. In 
particular, it is time-consuming to use these methods to investigate the effects of various factors 
(e.g. interfacial stress, layer depth) on the spectrum. 

Wave spectra in horizontal gas-liquid flows have been measured by Lilleleht & Hanratty (1961), 
Cohen (1964), Lleonart & Blackman (1980) and McCready & Hanratty (1985). The theoretical 
descriptions given by Lilleleht & Hanratty (1963) and Lleonart & Blackman (1980) were based on 
dimensional analysis. While some agreement between experiments and theory occurs, dimensional 
analysis is not an entirely satisfactory method for describing the wave spectrum because the 
dynamical nature of the problem, the importance of wave-wave interactions, is missed. McCready 
(1986) showed that it was possible to include wave interactions through the use of a dynamic 
balance for the wave energy. Using a procedure similar to that of Pao (1965) for turbulence, he 
showed if energy transfer occurred by overtone interactions, the shape of the capillary region of 
the spectrum 0 c > 40 Hz) was accurately described. However, as no energy input was included in 
his equation, it was not possible to predict the region around the peak which corresponds to the 
largest waves present and is of greatest practical interest. 

In this paper, the individual processes which control the shape of the spectrum, energy input and 
energy transfer by nonlinear interactions, are examined experimentally and theoretically. A 
dynamic energy balance, which includes energy input as well as dissipation and energy transfer by 
nonlinear interactions, is developed for the wave spectrum. Energy input and dissipation are 
described by using predictions of linear stability analysis. Nonlinear energy transfer, including the 
effects of layer depth and interfacial shear, is described as occurring through the interaction of a 
fundamental wave with its first overtone. Calculations using this theory demonstrate how various 
parameters influence the spectrum. Quantitative predictions of the spectrum are compared to 
measurements for numerous flow conditions and several liquid viscosities. In general, good 
agreement occurs. 

2. EXPERIMENT 

A detailed discussion of the experimental apparatus and technique used to measure the wave 
spectra and wave properties is given by Bruno & McCready (1988). The flow system in which the 
concurrent gas-liquid flows were studied consists of a horizontal, rectangular channel which has 
a flow area 2.54 cm high, 30.5 cm wide and a total length of about 8.5 m. Air is introduced into 
one end of the channel through a converging entrance section. Liquids, which consist of either 
water or a glycerin-water mixture, enter the channel through slots in the bottom of the channel 
about 10 cm downstream from the gas entrance. A wire mesh screen covers the liquid entrance to 
minimize disturbances. The gas and liquid exit the channel into a large separating drum which 
allows for recycle of the liquid and prevents any reflection of waves upstream. Experiments 
presented here cover a wide range of gas and liquid flow rates but specifically exclude conditions 
where roll waves are present. 
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Interfacial and wall shear stresses were determined from the pressure drop measurements using 
a micromanometer and the location of the zero stress plane obtained by traversing a Pitot tube 
between the gas-liquid interface and the top of the channel. Interfacial velocities were determined 
by placing thin computer card punched rectangles onto the gas-liquid interface and timing their 
progression over a known distance. Wave surface tracings were acquired by using a parallel-wire 
conductance technique that has been described previously by Miya et al. (1971) and McCready 

(1986). The wires are 0.0127 cm dia and are spaced 0.3 cm apart. Data are presented in the form 

of either surface tracings or wave spectra which are Fourier-transforms of the surface tracing time 

series. The spectral function ~b(f) is defined as 

a2= q~ 0c) df, [1] 

where a 2 is the variance of the instantaneous surface displacement andf i s  frequency. In this paper, 
the frequency spectrum is calculated from the surface time series using the IMSL subroutine 
FTFPS. To test its suitability for accurately resolving narrow peaks, we have calculated the spectra 
of various analytical functions and have found no evidence of spurious peaks. 

3. PROCESSES ASSOCIATED WITH THE WAVE SPECTRUM 

The shape of steady wave spectra observed in gas-liquid flows is determined by the combined 
effect of the energy input from the gas flow, viscous dissipation and nonlinear wave interactions 
which allow transfer of energy between different wave modes. To describe the shape of the wave 
spectrum, it is necessary to characterize all of these processes and use them in a governing equation. 

(a) Wave interactions 

It is known from the work of McGoldrick (1965), that finite amplitude capillary-gravity waves 
will engage in energy transfer among members of triads which satisfy the resonance conditions. 
Kim & Hanratty (1971) showed that equally important, similar, three-mode interactions occur 
between collinear waves which belong to a family of harmonics. A wave field generated by a 
turbulent gas flow will contain a broad distribution of harmonies which will lead to numerous 
possible wave interactions. The shape of the wave spectrum is strongly determined by the net effect 
of these interactions, van Gastel (1987) estimates, considering only resonant interactions, that 
nonlinear interactions dominate the linear growth and decay processes in controlling the shape of 
the spectrum. 

When formulating the effect that nonliear interactions will have in determining the shape of the 
spectrum, the primary questions which arise are: which interactions are dominant and how to 
account for them. van Gastel (1987) and Janssen (1987) have attempted to include all possible mode 
interactions (subject to specific assumptions) in their calculations of the spectrum. However, this 
leads to unnecessary complexity as many of the interactions are merely incidental to the 
determination of the shape of the spectrum. As demonstrated by the theory of Kim & Hanratty 
(1971), interactions between all of the waves in an overtone series are expected to be occurring in 
a spectrum of waves generated by gas shear. Because interaction rates are strongly dependent on 
the amplitude of the participating waves, the dominant interactions will be between the fundamen- 
tal mode (which are the waves which comprise the peak of the speeturm and therefore have the 
largest amplitudes) and the mode which has the largest amplitude of all the overtones. Since the 
spectra decay smoothly as the frequency increases, the overtone with the largest amplitude is always 
the first one. 

Experiments to track the development of the wave field when waves are induced artificially with 
an oscillating paddle were done. Not unexpectedly, strong interactions were observed between a 
fundamental wave and its first overtone and in some cases, higher overtones as well. This 
frequency-doubling interaction was clearly observed for paddle-induced waves between 5 and 
15 Hz. It should be noted that these interactions do not satisfy the resonance criteria. 
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Figure I. Wave spectra depicting the effect o f  paddle-induced waves and the interactions which result. 
= 0.47 cm, v* = 0.63 cm/s. 

One example of the frequency-doubling interaction is seen in figure 1. In this figure, when the 
paddle is off, the spectrum has a relatively flat peak between 10-20 Hz as these waves have about 
the same amplitude. However when the paddle is operated at 5 Hz, a strong overtone interaction 
is seen between the 5 and 10 Hz waves; spectral waves before and after 10 Hz are almost one order 
of magnitude smaller, suggesting a direct 5-10 Hz interaction. The surface tracing, shown in figure 
2a, for the case where the paddle is operating shows the dominant 5 Hz wave. The 10 Hz mode 
and some higher overtones are also present, as evidenced by the additional bumps which occur on 
the 5 Hz oscillations. 

The effect of layer depth on the interaction is demonstrated by comparing figures 1 and 3, where 
the layer thickness has been decreased from 0.47 to 0.31 cm. In figure 3, large spectral magnitudes 
are seen at about 5, 10, 15 and 20 Hz. For these conditions, energy transfer from the fundamental 
to its overtones is so rapid that more energy is found in the overtones than the fundamental. This 
spectrum is consistent with the results of Kim & Hanratty (1971) who showed theoretically and 
experimentally that the effect of decreasing the layer depth is to increase the interaction rate 
between all harmonics and allow for more waves in the overtone series to be excited more rapidly. 
In figure 2b, the surface tracing which corresponds to figure 3 clearly shows presence of four distinct 
modes. 

A final example of a fundamental-first overtone interaction is provided in figure 4, where the 
paddle is operated at 15 Hz and produces 30 Hz overtones. The types of wave interactions 
occurring when the paddle was operated at frequencies higher than about 15 Hz were not clearly 
detectable in a wave spectrum because these waves interacted quickly and became an indistinguish- 
able part of the random wind-generated wave field. 

(b ) Wave growth and dissipation 
Another process controlling the composition of the interface is the net growth rate, which is the 

difference between the energy input rate to waves and the wave energy dissipation rate. The 
frequency range of the unstable, hence growing, waves shifts with each set of flow conditions and 
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Figure 2a. Surface tracing of 1.5 s in duration for the conditions of figure I. Disturbances of higher 
frequencies are present along with the dominant 5 Hz wave. 

can be calculated from linear stability analysis (Hanratty 1983). Since the nature of the interface 
is a strong function of a selective net growth process, the wave spectrum, being a quantitative 
measure of the interface, is also dependent on the net growth rate. The basic phenomena of wave 
growth, dissipation and energy transfer are interrelated in a wave field and spectrum because wave 
interactions transfer energy from the most unstable waves to higher frequency waves capable of 
rapidly extinguishing the wave energy through viscous dissipation. These basic processes define the 
dynamic energy balance. 

In the spectral equation developed in section 4, the net growth rate will be calculated from the 
Orr-Sommerfeld linear stability analysis performed by Cohen & Hanratty (1965). While linear 
stability theory can only approximate the energy input which occurs for finite amplitude waves, 
it is expected to give reasonable answers because wave slopes are typically < 0.1. In the stability 
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Figure 26. Surface tracing of  1.5 s in duration for a layer which is thinner than in figure 2b. Because of  
nonlinear interactions, the original 5 Hz wave has evolved into an overtone series with the 15 Hz wave 

being the dominant mode. ~ = 0.305 cm, v* = 0.52 cra/s. 
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analysis, the wave speed (eigenvalue) c is complex with the real part ca giving the wave speed; waves 
are predicted to grow for positive values of  the imaginary part c~ which determines stability. Cohen 
& Hanratty solved the Orr-Sommerfeld equation for the liquid phase using the boundary 
conditions that the normal and tangential velocity components vanish at the bottom wall and by 
balancing the normal and shear stresses across the gas-liquid interface. A linear velocity profile 
is also employed. The corresponding growth factor ec~ is proportional to the net growth rate and 
is given by 

_P~l + ~ coth(g]) + 
( . P L  P L  ~ v,2 1 YL(C R - -  e o  ) - -  4 g 2 V L ( C R  - -  U0)coth(0Ji) 

4=v,  2 _ o~v[/2 (coth 2 ~7/-  l)c~ 2 (ca - U0)2"( 
( 2 ) l / 2 C g  

otcl= ,5  -1 [2] 
I2(CR -- Uo)coth(=7/) 

/J / 

The wavenumber is denoted by g, PL and v L are the liquid density and kinematic viscosity 
respectively, U0 and v* are the liquid interfacial and friction velocities and 7/is the average layer 
thickness. The pressure and stress variations are represented as a single sinuous function given by 
the parameters fs and/~s, where the subscript I refers to the component in phase with the wave 
slope and R denotes the component in phase with the wave height. In [2], the first two terms on 
the r.h.s, are positive and therefore promote growth through pressure fluctuations ( / s )  in phase 
with the wave slope and shear stress (f~g) fluctuations in phase with the wave height. The last three 
terms are negative, with terms three and four representing internal viscous dissipation (prevalent 
at high velocities) and the fifth term being a measure of bottom wall dissipation, which becomes 
relatively more important as the wavelength-to-layer depth ratio increases. 
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Figure 5. Initial growth of the wave spectrum as a function of fetch compared with linear growth rates 
of predicted by an Orr-Sommerfeld equation, h = 0.38 cm, v* = 0.61 cm/s. 



538 K. BRUNO and M. J. MCCREADY 

Wave spectra were measured at increasing fetch (distance from initial gas-liquid contact point) 
to depict initial wave growth and one example is presented in figure 5. Also included in this figure 
is the growth rate curve calculated from [2]. The caret quantities in ~tc~ were estimated using 
Abrams' (1984) data for the flow of a turbulent liquid over a solid wavy surface. Bruno (1988) has 
shown that these quantities should be applicable to gas-liquid systems because the gas-viscosity 
ratio .is sufficiently small (0.02-0.01) and the wave speeds are much slower than the maximum gas 
velocity (leading to no singularity in the Orr-Sommerfeld equation). The shape and location of the 
theoretical growth rate curve are consistent with the spectra; the most unstable Orr-Sommerfeld 
waves generally correspond to the fastest growing peak spectral waves and the magnitude of the 
spectra falls off dramatically on both sides of the peak in agreement with linear stability analysis. 
In addition, the experimental spectra suggest that the initial growth rate is exponential since the 
peak amplitudes increase exponentially with distance. This observation is consistent with the 
stability analysis assumption of exponential growth and also in agreement with the single wave 
growth experiments of Larson & Wright (1975). 

4. THEORETICAL DEVELOPMENT OF THE SPECTRAL EQUATION 

The motivation to derive an equation to predict the spectrum is first, to demonstrate the effects 
of flow parameters such as the friction velocity and layer height on the nature of the interface, thus 
leading to a better understanding of the controlling processes. Secondly, the spectral equation 
derived here provides a reasonably accurate approach for quantitatively predicting the character- 
istics of the gas-liquid interface. This development utilizes linear wave speeds, weakly nonlinear 
interactions and net growth rates calculated from the Orr-Sommerfeld analysis. While the 
interactions are probably correctly explained by the weakly nonlinear approach, actual waves may 
travel at speeds and experience growth rates different from the linear predictions. In addition, the 
inherent three-dimensionality of the problem is important and cannot be explicitly included. 
Therefore, this development should not be viewed as a rigorously correct attempt to predict the 
spectrum for idealized conditions [such as van Gastel (1987) or Janssen (1978)] but, rather, as a 
study to discover why wave spectra behave as they do in gas-liquid flows. 

(a) Spectral energy balance 

The premise underlying this deviation is that a continuous cascade of energy from low to high 
frequencies occurs. Energy is fed into primarily the fastest growing inertial waves (~  10-30 Hz) 
which provide an energy source for all other waves. The majority of energy is transferred upward 

~(¢o) 
S 

GI= 

EDF 

Figure 6. Diagram of the processes which govern the wave spectrum. 
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in frequency to shorter-wavelength waves which in turn quickly dissipate it at a rate proportional 
to the square of their amplitude. In this development, only transfer upward in frequency between 
a wave and its first overtone is considered. 

Consider an energy balance around the spectral Flement 6o~(o~ = 2nf), given in figure 6. Three 
competing phenomena are simultaneously occurring----each to a different degree depending upon 
the frequency interval of interest. First, the flux otl energy (energy/6~/time) from the gas to the 
liquid phase which promotes wave growth is defirled as ~'F- Secondly, irreversibly lost in each 
spectral element is a wave dissipation energy flux, ~lenoted by %F. This energy loss is composed 
of internal viscous and bottom wall dissipative effeCts. The third component of the energy balance 
is attributed to the net energy transfer rate G (eithe¢ upward or downward in frequency) resulting 
from nonlinear wave interactions. Energy enters the spectral element from lower frequencies at a 
net rate defined by and is transferred out of  the element at a rate given by Gl=+&o. The 
governing energy balance over each spectral element is therefore 

+ = GIo+ o + [31 

Taking the limit as 6co ~ 0  yields the differential equation 

dG 
d~o = qIF :- EDr, [4] 

which, after substituting expressions for G, ~F and i%F in terms of ~b(oJ), will provide the spectral 
equation. 

(b ) Energy transfer 
There are at least two similar ways of addressing the question of the rate at which energy transfer 

occurs. McCready (1986) followed the ideas of Heisenberg (1948) and Pao (1965) for homogeneous 
turbulence and assumed that the net rate of energy transfer is the product of the total energy per 
element 6o~ over which [4] is numerically integrated and the rate of transfer of that element to other 

I 
frequencies. The total wave kinetic and potential energy per element &o is 

= Eo$(Co) ,  [51 

where 

'[ 1 E0 = ~ PLg + aa~ + PL ~-  coth(ah) , [61 

with o denoting interfacial tension divided by liqui d density. The rate of transfer of energy in that 
element is given the symbol F and hypothesized tO be 

A £ o  
F = - - ,  [71 

• t" l 

where Ao~ is the frequency difference between the interacting waves and T, is the characteristic time 
I 

constant of the interaction. Therefore the intermediate form of G is 

c = E0 (co) - - .  [81 

If most of the net energy transfer occurs by the overtone interactions between a fundamental 
and its first overtone, then the change in frequency, Aco, will be equal to ogre, the frequency of the 
fundamental. Therefore, by definition, Aa~ reduces to 

Aco ~ 2cot -- a~, = co. [9] 

Admittedly all interactions do not behave aCcording to [9]. However, Kim & I-Ianratty 
(1971) have shown that before a higher harmonic can be excited, all lower harmonics must be 
present. 
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The characteristic time constant z~ is a measure of how quickly the interaction occur. For waves 
on an infinitely deep layer without gas shear, McGoldrick (1965) shows that the functional form 
of z~ is 

1 
~'l "~ [ 1 0 ]  

co~a' 

for regular two-dimensional waves. For the present wave field which consists of a distribution of 
wave modes and varying degrees of three-dimensionality (depending upon flow conditions and 
physical properties), the relation is more complex and the proportionality constant cannot be 
determined theoretically. As a consequence, it is necessary to include an empirical geometric factor 
which accounts for the randomness and degree of three-dimensionality of the surface. Experimental 
observations indicate that as the liquid viscosity is increased, the waves become more two- 
dimensional. The degree of randomness is also affected by viscosity as well as flow conditions. In 
this analysis, these effects will be lumped together into a coefficient Q by using a relation of the 
form 

a =K/~L , [Jl] 
#w 

where/~L and/~w are the dynamic viscosities of the liquid and water, respectively. The form of [11] 
and the value of K, an O(1) proportionality constant, were determined by fitting experimental 
spectral data. It is noted that the present Q differs from that used by McCready (1986) by the 
inclusion of the viscosity ratio. In terms of the spectral function, the interaction time becomes 

1 
zl = Qcoo~[c~ (co )]ll2( 6Coo )ll 2, [121 

where &Oo is the discretization interval for the numerically generated spectrum. The question which 
arises is, should the time scale be determined by the properties of the overtone or the fundamental? 
To determine this, we calculated ~ at each point along the spectrum and found that the two time 
scales were of the same order but that the slower time scale, and presumably the one which 
determines the rate of interaction, was always the lower frequency wave. Thus, the rate of energy 
transfer for random waves where there is no gas shear may be obtained by combining [7], [9] and 
[12] and evaluating the variables at the value of the lower frequency wave. No knowledge of the 
magnitude of the spectrum at the frequency of the overtone is needed and as a result, it is possible 
to calculate the spectrum by integrating a differential equation upward in frequency without any 
iteration being necessary. 

This derivation, which relies basically on dimensional arguments is a simplification of the actual 
situation. A second method of addressing the rate of energy transfer between regular two- 
dimensional, traveling waves with no gas shear, has been determined explicitly by Kim & Hanratty 
(1971) (their equation [14]). Translating their notation into ours, we find that the functional form 
is the same as above but that r~ should be evaluated at the frequency of the overtone. As mentioned 
above, both of the time scales (r~) were of the same order and change in the same fashion, so the 
time scale calculated from the fundamental frequency was used in this work because it obviates 
the need for iteration in the solution. In addition, the value of the spectral function is always known 
more accurately at lower rather than at higher frequencies (because of the initial value nature of 
the problem), so it was felt that more consistent results would occur if the time scale of the lower 
frequency was used. 

(c) Effects o f  gas shear and liquid depth 
Kim & Hanratty (1971) discovered that the wave interaction rate increases for decreasing layer 

depth. An explanation for this behavior is that as the layer becomes thinner, the waves become 
less dispersive and their celerities all approach twice the average liquid velocity. It is much easier 
for waves traveling at nearly the same speed to interact, therefore the interaction rate increases 
(~z decreases). Interaction coefficients arise in Kim & Hanratty's amplitude equation and each 
coefficient corresponds to a different type of interaction. These interaction coefficients are measures 
of how the layer depth affects a given interaction rate. The interaction coefficient in their work 
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which is relevant to this development is P4, which provides the effect of layer depth on the transfer 
of energy from a wave to its first overtone: 

1 
/'4 = ~ ([k] 2 + 4[k][2k] - 3) [13a] 

and 

[nk] = coth(n~h'). [13b] 

In a similar manner, Janssen (1986) derives an amplitude equation for an infinitely deep layer that 
includes the shearing effect of the gas phase. An increase in the shear rate increases the interaction 
coefficients and hence the rate of interactions because the orbital motions associated with traveling 
waves are forced to become more asymmetric (stretching occurs in the flow direction) due to the 
liquid velocity gradient and can therefore interact over a larger distance. The dimensionless 
coefficient for upward energy transfer for a fundamental-first overtone interaction which accounts 
for shear is 

where 

ah- 2 (CR -- Uo)Go 
u0 

'(' 41 

and 

[14a] 

Go = 1 - 2 ~  + 2/~02 [14b] 

*2 

~o = VL ~ ( U o  - -  CR)" [14C] 

As the interaction rate is proportional to P4 and fl, the increase in the magnitude of P4 with 
decreasing depth and fl with increasing gas shear (or friction velocity) are consistent with the 
experiments shown above. To properly apply P4 and fl to zl, the resulting functional representation 
of the characteristic time constant is 

1 
"C! = Qp4/JCOO~[~p(fO)]I/2(C~D)I/2. [15] 

At this point the energy transfer function G is completely defined and equal to 

G = QP4/Joj20tEo[~p(oJ)]3/2(~COD) I/2. [16] 

(d) Net growth rate 

The next task is to determine ~F -- eDF. The change in total wave energy E T with respect to time 
in the absence of wave interactions is equal to the difference between the rate of energy input from 
the wind and wave dissipation: 

dET 
dt = (~r - ~ : D F ) 6 ~ O D  • [17] 

The energy of a wave is proportional to the wave amplitude a and takes the following form from 
linear stability analysis: 

a = a0 exp{i~[x -- (ca + ici)t]}. [18] 

From [18] it is seen that when c~ is positive, the wave amplitude grows (is unstable) and, conversely, 
when c~ is negative the wave remains stable and hence does not grow. Starting with the definition 
of the total energy in terms of the wave amplitude, 

JET = Eo a2, [19] 
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and then taking dE+/dr and collecting only the real parts, one obtains 

dEr _ E0 2(~tCl )a 2, [20a] 
dt 

where the net growth rate is seen to be proportional to otc~. In spectral notation, [20a] is 

dE~ 
- E02(~Cl)4) (to)6too. [20b] 

dt 

Substituting [20b] into [17] provides the desired result of 

I]/F - -  EDF = 2E0 (otcl)4) (to). [21] 

The only unknown quantity in [21] is otc,, which is calculated from [2]. The dispersion relation given 
by Cohen & Hanratty (1965), which accounts for Doppler shifting and the effect of  the friction 
velocity, 

= U v * 2  tanh(ot])+ F(  v*2 )2 (ottr+g CR 0--2--~L-LO t L\2--~L-LO t tanh(otT;) tanh(otTi) \PL ot -1- /SsR~ll/2 ,pL0t /_]  [22] 

is used to relate ot, to and CR in all the appropriate equations. 
Substituting [2] into [21] and [16] into [4] yields the final form of the nonlinear spectral equation: 

d{QP4flto2otE°[4)(to)]3/2(6too)l/2} = 2otclE04)(to). [23] 
dto 

This equation is solved numerically. The solution method, values of the constants and a comparison 
between the numerical and experimental results are presented in the next section. 

5. T H E O R E T I C A L  AND E X P E R I M E N T A L  RE SUL T S 

Equation [23] is solved numerically using the trapezoidal rule. Experimental spectra indicate that 
under most conditions, the energy drops to zero at low frequencies. Consequently, the initial 
condition used in [23] for all solutions presented in this section is 4)(2n) = 1 x 10 "9, corresponding 
to an initial frequency of  1 Hz. The solution was insensitive to changes in the magnitude of  4)(2n), 
as long as it was kept ~< l0  -6. 

The integration interval used to solve [23] was a 6ted value of  0.2(2n). Smaller intervals produced 
nearly identical results and this was chosen as the optimum frequency spacing. For this value of  
6teD, the proportionality constant K = 0.61. This value for K was selected to produce the best 
match between the theoretical and experimental spectra at an average set of  flow conditions for 
both water and a 2.5 cP glycerin-water solution. The same value is used for all cases shown in this 
paper; there are no further adjustments in its value. It is noted that interaction ti~aes calculated 
from [15] using this value of  K and the assumed functional form of [l l] agree wel l~i th  the times 
reported by van Gastel (1987). This agreement supports both the form of [11] and the value of  K. 

A comparison between the experimental and corresponding theoretical spectra calculated [23] 
is given in figures 7-16. In figures 7-11 the liquid is water with a viscosity of  0.92 cP, in figures 
12-15 the liquid is glycerin-water mixture with a viscosity of 2.5 cP and in figure 16 the liquid is 
a glycerin-water mixture with a viscosity of  3.5 cP. In each figure the experimental spectral data 
are denoted by symbols. The experimental spectra were measured at a fetch of  6.0 m. By this 
distance, the wave fields have become uniform as the frequency spectra are nearly identical for fetch 
values > 3-4 m. The solid curves in figures 7-16 are the theoretical spectra calculated from [23] and 
the dispersion relation [22] is used to iteratively calculate the wavenumber ot at each frequency. 

It is of  interest to first examine the data. The total area under the wave spectral curves is observed 
to increase with increases in both friction velocity and liquid depth. If spectra at approximately 
the same v* and ~, but different viscosities (e.g. cf. spectra 7c to 12a, 8b to 16a or 10¢ to 14a) are 
compared, the lower viscosity fluid generally has a higher peak (although spectrum 7c to 12a is 
a counter example). There is a substantial difference which is observed in the shape of  these 
comparable spectra if the peaks are superimposed. The spectrum for the more viscous fluid decays 
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much faster as the frequency increases. This is evidently the result of the linear decay rates for waves 
of various frequencies which are proportional to liquid viscosity. 

Next, the experimental data are compared to the predictions of [23]. The worst agreement 
between the experimental and theoretical results is seen in figure 7. In this figure, the liquid 
Reynolds number (RL) is 255 based on the average layer depth and velocity; the wave field is 
two-dimensional until the gas Reynolds number (Re) reaches ~ 7500. It appears that the spectral 
equation is slightly deficient when predicting the spectra of relatively sedate flow conditions. 
Although the results in figure 7 are not as quantitatively accurate as desired, the correct qualitative 
trends are present as the magnitude of ~b increases and the peak shifts to higher frequencies with 
increasing friction velocity. However, the theoretical and experimental results coincide extremely 
well in figures 8-10 where the flow conditions create a rougher interface and an earlier R G transition 
from a two-dimensional to a pebbly three-dimensional surface. In figure 11, which contains data 
for the largest R L examined, the agreement is acceptable but a transition from over-predicting to 
under-predicting the magnitude of ~b has begun---especially at the higher Rc values. We note that 
for the higher RL and Rc values in these figures, a low frequency wave peak, which is not predicted 
by [2] is beginning to appear. Bruno & McCready (1988) have shown that this peak results from 
a growing linear instability of very-long-wavelength wave disturbances. The low frequency peaks 
would be even more prounced if better resolution at low frequencies were possible [see Bruno & 
McCready (1988) for example spectra]. However, this could be obtained only by digitizing the 
signal at a slower rate which would prevent resolution of the highest frequencies of interest. 

At the flow conditions listed in figure 12, the interface is predominantly two-dimensional. As in 
figure 7 for water, the spectral equation's quantitative predictions for tk(f) are inaccurate (however 
generally within the correct order of magnitude), but the qualitative trends are correct. In figures 
13 and 14 where the flow conditions are less tranquil, the experimental data are once again 
predicted moderately well. The results from the largest RL at which data were taken are seen in 
figure 15. For these flow conditions the spectral equation also underestimates the magnitude q~ (f) 
in the peak region. However, note that the theory has predicted the frequency spectra to be pinched 
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closely together, which is in qualitative agreement with the experimental spectra. This pinching is 
due to the influence of the layer depth and gas shear on the interaction time z~. 

Figure 16 is included to demonstrate that expressing the geometric factor Q in terms of the 
viscosity ratio, is applicable to more than the two viscosities in figures 7-15. Because it is a constant, 
Q does not affect the shape of the spectrum, only its magnitude. Therefore, although the theoretical 
spectra in figure 16 are shifted too far to the right, defining Q as the ratio of viscosities appears 
to select the proper magnitude of ~b(f). 

Data were not taken at RL > 1275 and RG > 9700 for water and RL > 590 and Rc > 9700 
for 2.5 cP glycerin-water solutions because roll waves began to appear on the interface. 
These disturbances influence the shape of the spectrum and cannot be predicted by the spectral 
equation. 

6. DISCUSSION 

Ideally, one would like to predict the wave spectrum for arbitrary conditions and flow 
configurations. To do this, it is essential that all of the individual processes which control wave 
behavior be understood. The data shown in section 3 demonstrate rather dramatically that energy 
transfer between various modes exerts a strong role in determining the shape of the spectrum. It 
is interesting to note that the time scales for the rate of energy transfer, which are on the order 
of I s, shown in figures 1-4 for cases which do not satisfy resonant conditions, are similar or 
somewhat faster than those calculated by van Gastel (1987) for strongly resonant interactions. This 
indicates that significant energy transfer occurs between nonresonant waves at rates which are 
similar to the resonance case. Although the results of Kim & Hanratty (1971) and Janssen (1987) 
indicate that monotonic energy transfer can occur for a purely resonant case and that oscillatory 
transfer (which is less efficient) will occur for nearly-resonant interactions, the presence of  
dissipation which increases with frequency (and prevents some of the energy transferred upward 
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from returning downward) makes it necessary to consider all significant overtone interactions. 
Therefore, any theoretical description of the wave spectrum should not be limited to purely 
resonant interactions. 

Our attempts to quantitatively predict the spectrum confirm the importance of interactions in 
determining the spectral shape. We found that it was essential to include the effects of shear and 
layer depth in the expression for the interaction rate otherwise discrepancies of an order of 
magnitude or more occurred when the results were compared to experimental data. For example, 
in figure 8, the range of theoretical peak spectral values would be two orders of magnitude instead 
of the actual one-half order of magnitude spread if the effects of depth and gas shear were not 
included. It also appears that fluids with different viscosities cause an additional complication 
because waves become more two-dimensional as the viscosity is increased. Spectra for the 2.5 cP 
liquid have peaks which are comparable to those for water at similar R L and Ro values. However, 
the calculated growth rates are significantly higher for the 2.5 cP fluid because the layers are thicker 
suggesting that the spectral peaks should be larger as well. As the liquid velocity gradient is actually 
lower for the more viscous liquid and the layer is thicker (precluding an increase in the interaction 
rate because of shear or a lower layer depth), the only obvious physical explanation for the behavior 
is that interaction rates are faster because the waves are more two-dimensional. This is consistent 
with McGoldrick's (1965) theory for strong resonanace which also predicts a smaller time constant 
rl for collinear wave fields. The need to use the first power (as opposed to a smaller power) of the 
visocity ratio in the expression for the interaction rate to match the data, demonstrates how 
significant effect this effect is. 

Another issue is the prediction of the rate of energy input for the waves. Linear theories are 
probably justified because the wave slopes are observed to be small, however the question of how 
to deal with the turbulent gas flow remains. Two straightforward and computationally accessible 
approaches are available. One is to solve an Orr-Sommerfeld equation for the gas phase as well 
as the liquid, assuming appropriate velocity profiles and laminar flow. This approach has been used 
by several researchers including Benjamin (1959), Miles (1959), Kawai (1979) and van Gastel et  ai. 

(1985). The alternative is to include the effects of turbulence by using the measurements and 
calculations of Abrams (1984) (he has solved an Orr-Sommerfeld equation including a turbulence 
model). A comparison of these two approaches is shown in figures 17a and 17b. In figure 17a, 
theoretical values for/~s~ (which dominates the growth process for a wide range of wavelengths), 
taken from the early work of Benjamin (1959) and the recent study of van Gastel et  al. (1985), 
are compared to those measured and correlated by Abrams (1984). Several interesting features are 
noted. First, the two solutions of Benjamin, solid wall and mobile interface, are very similar in 
magnitude and shape, indicating that the different boundary conditions make little difference in 
the solution (this is expected because the viscosity ratio, #G//~L is very small), van Gastel's solution 
differs from Benjamin's primarily because a different average velocity profile is assumed for the 
gas and liquid phases. However, the effect of turbulence is substantial. Abrams' results indicate 
that turbulence causes a qualitative change in the behavior for small wavenumbers. For higher 
wavenumbers, the shape is the same with a small but significant quantitative difference occurring. 
In figure 17b, growth rates from various models are shown. It is seen that the shapes are similar, 
while the peak from Abrams' data is sharper and approximately twice as large. It is noted that 
while Kawai (1979) showed good agreement between measured growth rates and his theory, 
Janssen (1987) states that because the effect of nonlinear interactions between waves was neglected 
(when data are compared to theory), Kawai's theoretical growth rates may be as much as a factor 
of two too small. Therefore, one can at least tentatively conclude that because turbulence effects 
are so important, the use of relations developed from measured values for flow over solid wavy 
surfaces is appropriate for gas-liquid flows. 

It is of interest to discuss the potential applicability of the present procedure for predicting the 
spectrum in other flow situations. Two cases important from a practical standpoint are annular 
and stratified flows in pipes. As mentioned above, if the layer thickness is much less than the 
wavelength of the dominant waves, such as occurs in annular flows where shear rates are 
exceedingly high, wave interactions do not occur and the wave spectrum is not governed by the 
dynamic process which was modeled here. However, for horizontal (or nearly horizontal) stratified 
flows, the wave spectrum will be determined by the same processes but with additional factors. The 



550 K. BRUNO and M. J. MCCREADY 

250 

200  

1 5 0  

( 0 ,  1 0 0  

50 

. . . .  I . . . .  I . . . .  I . . . .  i . . . .  i . . . .  I . . . .  l . . . .  I . . . .  I . . . .  

",.2 

A Benjamin-mobile interface 
. van Gastel 

0 . . . .  ! . . . .  ! . . . .  i . . . .  i . . . .  i . . . .  ! . . . .  i . . . .  i . . . .  i . . . .  

0 1 2 3 4 5 6 7 8 9 0 

(cm") 
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obvious complications which arise are those caused by the curvature of the pipe. Namely, the gas 
flow will have secondary currents which could cause some small changes in the energy input rate. 
In addition, the layer depth will not be constant. These effects can be expected to exert some minor 
quantitative changes in the spectrum. The present analysis would probably work well using an 
average depth. A potentially major change in the spectrum of capillary-gravity waves would occur 
if a significant gravity wave peak appears which would be possible in large (dia >~ 20 cm) conduits 
where liquid depths are >~ 10 cm. As noted by Bruno & McCready (1987), spectra (see Liu & Lin 
1982) measured on deeper layers invariably have much larger magnitude spectral values for the 
10-100 Hz range than those measured in a small channel. The probable explanation for this is the 
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instability of the peaks of gravity waves in the presence of surface tension which causes parasitic 
capillary waves to form in front of the gravity wave peak. Those parasitic waves can contribute 
substantially to the magnitude of the spectrum because their parent gravity waves provide an 
essentially infinite (relative to the capillary wave) energy source. Quantitative descriptions of this 
effect for regular periodic waves have been given by Longuet-Higgins (1963) and Crapper (1970). 
Measurements by Chang et al. (1978) clearly show the appearance and magnitude of these waves. 
The theory described above does not account for this direct type of energy transfer from gravity 
waves to much smaller capillary waves. As a consequence, wave spectra in stratified flows where 
the liquid is deep could be expected to have high frequency wave spectra which are substantially 
higher than those predicted by [23]. 
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